
(Invited Paper) on the Security of
Blockchain Consensus Protocols

Sourav Das(B), Aashish Kolluri, Prateek Saxena, and Haifeng Yu

Computer Science Department, School of Computing,
National University of Singapore, Singapore, Singapore

souravdas1547@gmail.com, {aashish7,prateeks,haifeng}@comp.nus.edu.sg

Abstract. In the last decade, several permissionless proof-of-work
blockchain protocols have focused on scalability. Since these protocols
are very difficult to change once deployed, their robustness and security
are of paramount importance. This paper summarizes the desired end
properties of blockchain consensus protocols and sheds light on the crit-
ical role of theoretical analyses of their design. We summarize the major
paradigms in prior constructions and discuss open issues in this space.

1 Introduction

Blockchain protocols, which originated in Bitcoin [57], allow a large network
of computers to agree on the state of a shared ledger. Applications utilizing
blockchains embrace a semantics of immutability: once something is committed
to the blockchain, it can not be reversed without extensive effort from a major-
ity of computers connected to it. These protocols embody the vision of a global
“consensus computer” to which arbitrary machines with no pre-established iden-
tities can connect for offering their computational resources (in return for a fee),
without dependence on any centralized authority. Despite this, the computa-
tional infrastructure strives to offer failure resistance against arbitrarily mali-
cious actors. Security is at the heart of these protocols and applications built
on them, as they now support an economy valued at several hundred billion
dollars1.

Theoretical frameworks should guide the construction of practical systems.
The last decade of work on designing blockchain protocols highlights the impor-
tance of this interplay. In this paper, we distill the essence of the problem of
designing secure blockchain consensus protocols, which are striving towards lower
latencies and scalability. Our goal is to present key results that have surfaced in
the last decade, offering a retrospective view of how consensus protocols have
evolved. We examine a central question: is Bitcoin’s original consensus protocol—
often called Nakamoto consensus—secure, and if so, under which conditions?

The authors are sorted alphabetically by the last name.
1 Total market capitalization of cryptocurrencies is 217, 279, 849, 996 USD at the time

of writing [5].

c© Springer Nature Switzerland AG 2018
V. Ganapathy et al. (Eds.): ICISS 2018, LNCS 11281, pp. 465–480, 2018.
https://doi.org/10.1007/978-3-030-05171-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05171-6_24&domain=pdf
https://doi.org/10.1007/978-3-030-05171-6_24

466 S. Das et al.

There have been many folklore claims, for instance, that Nakamoto consensus is
categorically secure up to 1

2 adversarial power, beyond which “51% attacks” vio-
late its guarantees [57,62]. Careful analysis, however, has dispelled many such
claims. The quest for designing more scalable and secure consensus protocols
has ensued. We review some of these construction paradigms and open prob-
lems. We focus mostly on protocols that are designed to operate in the open or
permissionless setting which limit adversaries by computational power only.

2 The Blockchain Consensus Problem

One of the novel algorithmic advances in Bitcoin is its consensus algorithm called
Nakamoto consensus. The protocol runs between a set of miners (computers),
connected via a peer-to-peer (P2P) overlay over the Internet. Miners agree on the
state of a globally distributed ledger of transactions periodically. Transactions are
broken up into sets of constant size called “blocks”, and miners broadcast them
to other miners continuously. The essence of the blockchain consensus protocol
is to reach agreement on the total order on a common subset of blocks seen by
all the honest miners. The total ordering of blocks is sufficient to achieve a well-
defined notion of consistency [43]. With this, for instance in a cryptocurrency
application, it is easy to avoid double-spends: the client can always pick the
first2 transaction that spends a coin, ignoring later (conflicting) transactions
that spend the same coin.

One way to agree on the total order, as proposed in Nakamoto consensus
is to order blocks in a hashchain data structure [2], which coined the term
“blockchain”. In a blockchain, blocks are chained in a sequence using crypto-
graphic hashes, where one block hash binds it to its predecessor in the total
order. Transactions can have any semantics. For instance, in Bitcoin these trans-
actions represent ownership (and payments) of virtual coins. In more recent
cryptocurrencies, transactions represent the more traditional notion of atomic
state updates for programs called smart contracts [4,68].

2.1 Threat Model and Assumptions

Miners who follow the prescribed protocol are called honest. This consensus
protocol makes three assumptions, which strikingly differ from prior literature:

(a) honest peers, with no pre-established identities, can broadcast publicly to
all other honest nodes a block synchronously, within a delay δ;

(b) the total computational power of the system is approximately known, out
of which a known fraction f is assumed malicious (Byzantine [44]);

(c) all peers have an unbiased source of local randomness, and a trusted setup
phase creates public parameters in a constant size “genesis block”.

2 Earliest one in the total order.

(Invited Paper) on the Security of Blockchain Consensus Protocols 467

Bitcoin’s assumptions, especially the combination of (a) and (b), are novel
and minimalistic in a sense. Prior works in the literature study asynchronous
networks which can lose connectivity between honest miners in the P2P overlay
for indefinite periods of time [10,28,51]. We say that the network is “partitioned”
if honest nodes lose connectivity to a significant fraction of other honest miners.
Under this asynchronous model, a deterministic consensus is classically impos-
sible [28] and most probabilistic consensus algorithms in the classical model
have exponential round complexity [39]3. This suggests that some more assump-
tions are necessary to avoid well-known impossibility results and long-standing
problems. Assumption (a) of δ-synchronous broadcast is stronger than assum-
ing an arbitrarily asynchronous network, but the protocol designer can estimate
an acceptable network delay δ, and the Nakamoto consensus protocol can be
instantiated with a block generation time that is large enough to accommo-
date it [15,56]. Different blockchains use this flexibility of picking different tol-
erance to network partitions [3,4]. Many prior protocols in the literature have
assumed much more complex communication models of strongly synchronized
clocks across nodes, pre-established identities attached to each message, global
directories of identities participating (e.g. PKI), secret communication channels
between peers, and so on [29]. Bitcoin takes a fresh approach assuming none of
these.

Some form of sybil resistance is necessary to an open system where any
number of computers or miners can connect [23]. Assumption (b) is a form of
Sybil resistance, which is substantially different from prior protocols that assume
pre-established identities or PKI [52]. For instance, popular Byzantine agreement
protocols achieve consensus in a setup that assumes that the set of participants in
the protocol are known to each other in advance [19,44]. Bitcoin does not assume
that miners know identities of other miners in advance. More recently, many
“Proof-of-Stake” (PoS) proposals assume that identities are pre-established and
have an agreed upon fractional ownership in virtual coins (or stake) [20,32,38].
Such staking assumptions can be bootstrapped from Assumption (b).

Assumption (c) is assumed only once at the start of the blockchain. How-
ever, we believe this assumption is not necessary; it can be constructed directly
from assumptions (a) and (b) using recent works as building blocks [7,34]. It is
convenient, however, to assume this to avoid complexity of bootstrapping.

Attacking the Assumptions. A number of works have shown direct attacks on
these assumptions. Assumption (a) states that all messages from honest nodes
reach other honest within time δ; however, partitioning and eclipse attacks sub-
vert these directly [8,33]. In partitioning attacks, malicious nodes aim to discon-
nect honest miners from each other at the P2P or ISP level. Similarly, eclipse
attacks allow certain malicious miners to delay the propagation of network mes-
sages selectively to other miners. Protecting against these attacks is directly

3 King at el. have presented the first theoretical result with polynomial round complex-
ity recently in the model where no secret channels are constructed; the construction
tolerates less than 1% Byzantine adversary [12,39].

468 S. Das et al.

important to fixing the parameters of the consensus algorithms; however, these
are outside the scope of the design of the consensus protocol itself. It does moti-
vate building “hard-to-partition” P2P overlays, and defenses to avoid centraliza-
tion at the ISP-level on the Internet, upon which blockchain overlays operate.

Assumption (b) has been challenged as well. The assumption that the adver-
sary controls no more than fraction f of the compute power has been subject
to much debate, since centralization of mining power is an acknowledged con-
cern [25,48]. Mining protocols that force mining pools to run fairly, such as by
executing a smart contract, have been investigated as a practical solution [50].
Prior work has proposed dis-incentives against forming mining pools or coali-
tions through non-outsourceable puzzles [53]. However, recently, there have been
reports of real attacks that they require short-lived capital to carry out the
attacks on specific public blockchains [14]. Addressing these attacks effectively,
through incentives or technical means, is an open problem. Nonetheless, we argue
that some forms of Sybil resilience and network delivery guarantees seem neces-
sary; therefore, Bitcoin’s assumptions are an acceptable starting point.

2.2 Nakamoto Consensus

Bitcoin’s consensus protocol is a concrete example of a blockchain proto-
col. The protocol uses a specific computational puzzle or “proof-of-work”
(PoW) puzzle [2,24]. The puzzle asks miners to find a nonce such that
H(nonce||seed|| . . .) < 2d, where d is tunable “puzzle difficulty” parameter and
H is a cryptographically strong hash function. Anyone with the solution to the
puzzle <nonce, seed, d> can verify in one hash evaluation whether the solution
is valid. The seed serves the role of a randomized value for instantiating new
puzzles over time. It is useful to think of PoW puzzles as a procedure to sample
from the computational power distribution in the mining network.

Each miner in the protocol keeps minimal state, i.e., the longest chain of
blocks in its local view. Each miner solves a PoW puzzle, which is stateless
computation. The inputs of a puzzle are taken only from miner’s local view,
specifically, the latest block hash value serves as seed of the PoW puzzle. If a
miner receives a block from the network, it inspects the validity of the block.
If the block has a valid PoW solution, the miner extends its local view of the
blockchain by one block, and the next round of mining starts with this new
seed. If the miner receives a valid chain longer than its present chain, the miner
switches its local view to it immediately. A block is confirmed after a constant
number of blocks (k) extend it in the longest chain. The protocol sets k internally
(k = 6 in Bitcoin). This consensus protocol is orthogonal to the representations
of transaction data (UTXO [57] vs. accounts [72]), DoS-prevention checks on
network messages [71], and validity checks (double-spend validation) [17,47,71].

2.3 The Problem

The blockchain consensus protocol allows each miner to periodically output a set
of blocks that it deems as confirmed or final. The security goal of the consensus

(Invited Paper) on the Security of Blockchain Consensus Protocols 469

protocols is to ensure that honest miners (a) agree on the same total order for
all confirmed blocks, and (b) the set of confirmed blocks includes those proposed
by all miners fairly, i.e., in proportion to their contributed computation power
for mining. We consider a protocol secure up to a fraction f of adversarial power
if it can guarantee its security goals with high probability (w.h.p.)4. The under-
lying constraint is δ, the time taken for honest miners to receive a fixed size
block, which is pre-determined by the network bandwidth of the miners. The
performance criterion is how quickly blocks proposed by miners are agreed upon
by the honest network.

Protocols can be compared both on their block confirmation rate and their
tolerance to adversarial fraction f . If a protocol A includes strictly more blocks
in its agreed total order per unit time than protocol B, tolerating the same
adversarial power, then A is strictly better in performance. Likewise, if proto-
col A agrees on the same number of blocks per unit time as B, but tolerates
strictly more adversarial power, then A is strictly better in security. One can
even compare different configurations of the same protocol. Taking Nakamoto
consensus as an example, the parameter k (number of confirmation blocks) offers
a tradeoff between security tolerance and confirmation time. If we compare two
configurations of Nakamoto consensus, with different values of k, it turns out the
configuration with larger values of k offer slower confirmation times but higher
security tolerance.

Security Properties of Blockchain consensus Protocols. The foremost question
for any blockchain consensus protocol is which security guarantees it provides
when a fraction f of power is controlled by a Byzantine adversary. One can think
of the blockchain the protocol as a continuous time protocol, where at any time
instant, each miner reports a set of blocks as confirmed and a total ordering
relation over them. The first security goal is to ensure that an honest miner does
not change its set of confirmed blocks over time, captured by a stability property:

Stability: For any honest miner, the set of confirmed blocks output at time t1
is a subset of the set of confirmed blocks at time t2 w.h.p, if t2 > t1. The order
of confirmed blocks does not change over time w.h.p.

One oft-cited strategy for the attacker to subvert the stability property in
Nakamoto consensus is to introduce an alternate longer chain starting at a block
that is at least k blocks deep. If successful, this causes honest miners to switch
their view on what is confirmed. This strategy was analyzed in the original
Bitcoin paper [57]. However, this is not the only strategy to consider; the protocol
must remain secure under all adversarial strategies [16].

The second security goal is to prove that miners following the protocol reach
agreement: for any two honest miners, the confirmed blocks of one are also con-
firmed by the other, and that the order of the confirmed blocks is identical for
both. Specifically, the following agreement property captures this:

4 For any security parameter λ > 0, an event happening with high probability (w.h.p)
implies that event happens with probability 1 − O(1/2λ).

470 S. Das et al.

Agreement: Let C1 and C2 be the set of confirmed blocks reported by any two
honest miners, then w.h.p:

(A) Either C1 ⊆ C2 or C2 ⊆ C1; and
(B) the blocks in C1 ∩ C2 are ordered identically by both miners.

At any time instant, note that requirement (A) above allows one miner to
not have confirmed all the blocks of the other honest miner. But, it disallows
the case where two honest miners confirm two blocks, each one of which is only
confirmed by one miner and not the other. Requirement (B) ensures blocks that
are confirmed by both will necessarily be in the same order.

In Nakamoto consensus, satisfying the agreement property implies that the
longest chain, discarding the last k blocks, of an honest miner should be a prefix
of the longest chain of other honest miners [17]. Ensuring a common prefix
satisfies both requirement (A) and (B) above. These properties (and others)
are used to prove rigorous analytical bounds on the fraction f tolerated under
different attack models by Nakamoto consensus and its variants [30,36,58].

A third critical property of the blockchain protocols is fairness. In a fair
protocol, if the adversary controls fraction f of the computational power, the
expected fraction of blocks contributed by it in the confirmed set blocks should
be close to f . However, the adversary can deviate from the honest protocol to
mine more blocks [27,31,63]. It may do so to increase its mining rewards, to
favor or censor transactions of its choice, or bias the fairness of the application
running on top of the blockchain in some way. The following property captures
this security notion of fairness:

Fairness: There is a negligible probability that the fraction of blocks proposed
by the adversary in the set of confirmed blocks, over any time interval t > c . δ,
for some constant c, is more than f .

The constant c in the above definition specifies whether the protocol is fair
over a small time windows or larger ones. Protocols that minimize c are desirable,
as they sample from the computational power distribution in the mining network
frequently. To understand the importance of minimizing this constant, consider
the following proposal: one could run any fair consensus protocol to agree on a
leader (say) once a week who broadcasts a massive “block” for the rest of the
week. This is sufficient to utilize the bandwidth available, and in expectation over
a large time window (say 1 year), it would be fair in picking leaders. However,
such a protocol is not desirable as that leader may favor its own transaction
blocks for a week. Further, the leader may be targeted for Denial-of-Service (DoS)
or eclipse attacks during its tenure. Therefore, blockchain protocols that agree of
(lots of) small blocks, sampling often from the computation power distribution,
are better as fairness holds over shorter time windows.

Existing blockchain protocols can be compared directly on the minimum
time window (or c) over which their fairness holds. Existing scalable blockchain
protocol compete on lowering c for better decentralization and DoS-resilience.

(Invited Paper) on the Security of Blockchain Consensus Protocols 471

3 Security Analysis of Nakamoto Consensus

Stability & Agreement Properties. Different strategies to subvert the stability
and agreement properties of Nakamoto consensus have been studied, both exper-
imentally and analytically, in prior works [30,58,66]. One key observation from
these analyses is that Nakamoto consensus protocol exhibits poor tolerance to
adversarial power when the block interval reduces significantly, especially as it
starts to approach the broadcast latency. Intuitively, at low block intervals, many
miners will start to mine blocks nearly simultaneously; these will be received in
an unpredictable order by other miners. Consequently, some miners will mine
on one block while the others on other blocks. This results having temporary
“forks” in the chain. The rate of forks, often measured by the creation rate of
“stale blocks” (which do not end up on the longest chain), is measured empiri-
cally by Gervais et al. for various configurations of Nakamoto consensus [31].

The security of Nakamoto consensus protocol hinges primarily on the ratio
of the block interval to the broadcast latency. Several analyses have shown that
there exists a large enough k (number of block confirmations) for which the
protocol is secure for some large values of the block interval [30,58,66]. For
certain high block interval rates (e.g., 10 min as in Bitcoin) for broadcast delay δ
of a few tens of seconds observed empirically [22], prior analysis shows that the
agreement property holds close to f = 1

2 adversarial power fraction. However,
this adversarial power tolerated drops as block interval rates reduce. Specific
attack strategies have shown that the f drops to well-below 40%, even when
the ratio of block interval rate to δ is close to 1, as in Ethereum [36,58]. The
theoretical security tolerance thresholds for which security is guaranteed drops
quickly as block interval decreases further. These results explain that Nakamoto
consensus is not categorically secure under arbitrary block interval rates, unlike
what folklore claims portray. More effective attack strategies and models than
those proposed in prior works are possible and an open area of investigation.

Fairness Property. The fairness property has been extensively studied as well.
The selfish mining and short-term block withholding strategies (c.f. Eyal and
Sirer [27]) provide prominent results. This work shows that even a miner with
25% of the computation power can bias the agreed chain with its blocks (gain-
ing more reward than expected). This shows that Nakamoto consensus cannot
withstand a 1

3 or 1
2 adversarial power, as is assumed by the folklore claims of

“51% attacks”. This is relevant because a number of works rely on this fairness
property for application-specific security guarantees (e.g. beacons [13,16], lotter-
ies [7,13], bounties [18], samplers [6,41,47,73]), assuming that fairness property
holds for certain adversarial power.

When studying the fairness property, many works have emphasized a subclass
of rational adversaries, i.e., miners incentivized to optimize some utility function
(e.g. maximizing their expected profits, maximize blocks mined by it, censor cer-
tain transactions, and so on) [27,31,63]. There have been various results showing
the coin reward structures are not incentive-compatible, and rational miners can
maximize their utility by deviating from the protocol [35,49,69,70,74].

472 S. Das et al.

Remarks. We remind readers that assuming that no miners are Byzantine, just
that miners are either rational or honest, has some limitations. Rationality argu-
ments are often made in virtual coin incentives and there are real markets today
where coins are traded for fiat currencies. An attack may seem irrational (not
incentivized) viewed from the objective of an assumed utility function for the
attacker, whereas it may be incentivized as it may impact the valuation of virtual
coins. Early works on the Goldfinger attacks [42] and feather-forking [1] discuss
this issue of how reasonable it is to assume that miners will be rational versus
Byzantine. Nakamoto protocol safety merits a study independently of the model
of incentives, directly in the threat model of Byzantine adversaries.

4 Scalability Extensions to Nakamoto Consensus

Increasing Block Sizes. One natural way of increasing transaction rates is to have
large blocks in Nakamoto consensus that consume all the bandwidth available. In
such a design, optimal bandwidth utilization is achieved by picking large block
sizes. Therefore, in such a solution, the constant c of the fairness property is
directly dependent on the block sizes sufficient to saturate the entire network’s
bandwidth. As discussed earlier, this may not guarantee fairness in short time
windows, and the attacker can target a single block proposer in each epoch.
Several proposals utilize this design choice, such as the use of key blocks in
Bitcoin-NG [26] and the identity establishment step of [21], implicitly inheriting
the issue of ensuring fairness.

Reducing Block Interval. For achieving fairness in shorter intervals, one promi-
nent re-configuration of Nakamoto consensus is to reduce the block interval. In
Nakamoto consensus, this is achieved by lowering the puzzle difficulty for the
known computational power. This tack is utilized in many cryptocurrencies. Bit-
coin fixes the interval to be approximately 10 min, whereas Litecoin reduces it by
four times and Ethereum brings it to 10–17 s. The lower the block interval rate,
the better the fairness in choosing how many block proposal are generated per
unit time. However, as explained in Sect. 2.3, the longest chain rule for selecting
the total order does not remain secure. Lowering the block interval lowers the
adversarial power f that the protocol tolerates significantly.

When block intervals are reduced in Nakamoto consensus, the open problem
is how to order the blocks received by a miner. Various ordering rules have been
proposed in the literature, but a solution that provably achieves optimal security
and confirmation rate is not yet known. We summarize existing proposals next.

GHOST Rule. Sompolinsky and Zohar proposed the GHOST rule, an alternative
to the longest chain rule of counting the number of blocks [66]. In the GHOST
rule, miners retain information of all blocks they obtain from the network in
their local view. These blocks thus form a block tree-like structure i.e., each
block contains a subtree of blocks mined upon it. The weight of a block is the
number of blocks in all forks belonging to its subtree. The GHOST rule dictates

(Invited Paper) on the Security of Blockchain Consensus Protocols 473

that heaviest chain consists of the heaviest block, by weight, at each depth in the
tree of forks, thus, allowing blocks that are not on the heaviest to contribute to
the weights of blocks on it. Hence, in essence, it picks the “heaviest” chain (with
evidence of the most mining work contributed to it), rather than the longest.

A security analysis of the GHOST rule for certain attack strategies is pre-
sented in the proposal of Sompolinsky and Zohar [66]. Kaiyias et al. establish that
GHOST rule is secure for certain parameters when block intervals are large [37].
The security analysis of the GHOST rule, especially when the block interval is
smaller than the broadcast delay, merits a careful analysis, like in the case of Bit-
coin’s longest chain rule. Specifically, the security depends on how ties between
heaviest blocks of equal weight are resolved. Several tie-breaking rules have been
proposed, picking (a) uniformly between candidate blocks, (b) the first one that
the miner receives, (c) the one with the smallest timestamp, and (d) the one with
the smallest PoW puzzle solution. Different attacker models have been studied
showing that GHOST is not unilaterally superior to the long chain rule [37,66].
It has been suggested that strategy (a) is preferred to strategy (b) for certain
range of block intervals when the adversary uses a selfish mining strategy for
fairness [27]. We conjecture that, in fact, strategy (a) is not universally better
because it splits the available honest mining power across various forks. This
reduces the power necessary for the adversary to create the heaviest chain by
mining selfishly on its own fork, impacting the stability and agreement property.

Much like the longest chain rule, the final selected chain in GHOST dis-
cards all blocks that are not along the heaviest chain. So, the throughput of
the GHOST protocol is within a small factor of that resulting from the longest
chain rule. This is sub-optimal since many blocks seen by the honest miners are
eventually discarded, lowering the average confirmation rate per block.

Directed Acyclic Graphs (DAGs). Recent works have proposed mechanisms to
include blocks that are not on the longest or the heaviest chain in Nakamoto
consensus. One line of work proposes that instead of keeping a chain, the miners
can keep a directed acyclic graph (DAG) of blocks seen in their local view [45,
46,60,64,65]. Each miner has its view of the blocks it has seen, partially ordered
in the DAG. The DAG has edges called “reference edges” that point to those
blocks that the miner saw before it mined the present block, in addition to usual
hashchain edges. The protocol specifies how miners order the blocks at the same
depth in their local views of the DAG, and agree on their diverging DAG views.

A number of rules have been proposed to agree and order DAGs, such as
SPECTRE [65], PHANTOM [64], and Conflux [46]. For instance, the Conflux
protocol shows one mechanism for achieving this by finding a “pivot chain”
using the GHOST rule and then topologically sorting the blocks that are at the
same depth as a block on the pivot chain. Miners union the DAG views they
receive from other nodes. Blocks at the same depth are ordered on hash value
of PoW puzzle difficulty solved. The security of Conflux reduces to that of the
GHOST rule. The PHANTOM protocol selects a subtree rather than a single
chain and sorts topologically. The Conflux paper presents a liveness attack on
the PHANTOM protocol, which is shown to be effective with an adversary that

474 S. Das et al.

controls 15% computational power. DAG based schemes are relatively recent,
and their rigorous scrutiny deserves further attention.

5 Scalability Solutions Based on Byzantine Agreement

The difficulty of securing variants of Nakamoto consensus has led to an alterna-
tive line of protocols that leverage classical Byzantine agreement (or BA) proto-
cols instead. Consensus in a Byzantine network has been extensively studied, see
surveys [9,29,39]. However, directly applying BA algorithms in the assumption
model of Bitcoin is not straightforward. One key difficulty is that commonly
BA protocols assume a pre-established set of identities known to all participants
running the protocol.

To achieve this starting point, several protocols propose different designs
to establish identities from the assumptions (a)–(c). Wattenhofer et al. use the
Nakamoto consensus protocol to arrive at a common prefix of blocks, which
contain public keys (identities) of the participants [21]. The security of this step
directly relies directly on the security of Nakamoto consensus variants utilized.

The use of Nakamoto consensus to establish identities as a pre-step is not
necessary. A number of works including Elastico [47], Omniledger [41], and
RapidChain [73] directly establish identities from PoW or related cryptographic
constructs5. A number of these solutions further “shard” identities, i.e., assign
different clusters/committees to identities implicitly which can operate in paral-
lel [6,41,47,73]. More recent works show how to use more general cryptographic
puzzles to bootstrap a “reconciled view” of the set of participants in a mining
network without Nakamoto consensus and even without assumption (c) outlined
in Sect. 1 [7,34,53].

The security of these designs depends directly on the size of the set of iden-
tities established to run the BA protocol. The larger the size of the identity set,
the higher is the communication cost of establishing the identity sets between the
participants and subsequently running the BA protocol instances. This sample
size establishes limits on how often the identity establishment protocol can run,
which is directly related to the constant c for which the fairness property holds.
There is a trade-off in choosing the sample size that different designs make. The
sample sizes picked in various designs vary, but typically are in hundreds, for
acceptable levels of security and confirmation times in tens of seconds [32,41,47].

The set of identities is supposed to be chosen randomly by sampling the
computational power or stake distribution. Therefore, the fraction of adversarial
identities in the chosen set is f in expectation. For sets of size s, the probability
of the adversarial identities deviating from the mean f is bounded by a func-
tion exponentially small in s, which follows from the standard Chernoff bounds
(Chap. 4. [55]). We point out that these analyses of sample sizes for establish-
ing identity sets are often the same for proof-of-work systems and proof-of-stake
systems [32]. This is because the process of creating identities based on random
5 Verifiable random functions (VRFs) have been used to probabilistically select iden-

tity sets without eagerly revealing the identities selected [32,41].

(Invited Paper) on the Security of Blockchain Consensus Protocols 475

sampling, and counting how many identities (Byzantine and honest) end up in
an identity set, is the same for many PoS- or PoW-based systems. In all these
different protocols for establishing identities, the role of a formal framework to
model the sampling process (often a Binomial random variable6) guides the
robust choice of sample size parameters.

A second factor that dictates the set size is the fraction of adversaries the BA
algorithm can tolerate in one instance. BA protocols designed original for fully
asynchronous networks like PBFT [19] tolerate 1

3 adversary or their more efficient
versions (ByzCoin [40], Omniledger [41]). Recent works use synchronous BA
protocols which can tolerate the optimal 1

2 Byzantine fraction [29,61]. Protocols
that can tolerate better adversarial fractions (e.g. 1

2 vs. 1
3) require further smaller

sets of identities [73].
The use of BA agreement in blockchains has spurred further research in

designing faster BA protocols. The trade-offs in designing BA protocols which
are fast when the network delay δ is small while degrading gracefully on slower
networks have been actively studied [41,54,59,61]. Several works have improved
the communication costs of BA agreement protocols, trading off the perfor-
mance between the honest case and when the overlay P2P graphs have Byzan-
tine adversaries [40,67]. More efficient broadcast primitives have emerged, for
instance, using collective signing [67] or erasure-coded information dispersal tech-
niques [54,73].

As blockchains run continuously, multiple rounds of BA protocol are implic-
itly composed in sequence. In sharded blockchains, BA protocol instances are
often composed in parallel as well. Some care must be taken when composing
instances, especially for BA protocols that have probabilistic termination time
like the BA� algorithm [32] or PBFT7 [19]. When BFT protocol instances are
running in parallel—as in sharding-based blockchain protocols—the expected
running time for all of the instances generation may not be constant in expec-
tation, as the slowest instance (out of many) dominates the stopping time [11].
Optionally, to mitigate this delay, a protocol may choose to run a BA proto-
col instance to synchronize the output of the parallel instances running on each
shard [47]. Specifically, a final committee determines whether a shard has agreed
upon a block or not within a predetermined time bound. This bounds the delay
at each shard, however, it admits the possibility that in some rounds, empty
blocks will be mined. However, the probability that the protocol does not make
progress for a few rounds under the assumption (a) of Sect. 2.3 is negligibly
small. Protocols may not choose to synchronize outputs of shards at each epoch,

6 The probability of a picked identity being Byzantine in the sample set is f , and
honest is 1 − f . The analysis examines two Binomial random variables, the number
of honest and Byzantine adversaries picked in an indentity set, such that their ratio
does not exceed the tolerance of the BA algorithm. When Nakamoto-style PoW is
used to create identities, the number of identities created per unit time (by setting
an appropriate puzzle difficulty), is approximated well by a Poisson random variable.

7 PBFT is a leader-based protocol and may have multiple rounds, which depends on
the probability of a dishonest leader being chosen at a particular round triggering a
“view change” sub-step.

476 S. Das et al.

but then additional mechanisms to ensure atomicity of cross-shard commits in
an epoch are often utilized [41].

6 Conclusions

We survey known results about how well Nakamoto consensus guarantees desired
security, when configured for faster confirmations. Guided by theoretical anal-
yses, new designs and variants of the Nakamoto consensus protocol are under
active investigation, searching for an optimal protocol. Careful analyses have
dispelled folklore claims of safety against 51% attacks hold categorically when
re-configuring the Nakamoto consensus protocol. We further summarize another
recent paradigm of constructions that are based on using established Byzantine
agreement protocols. We explain some of the commonalities and the factors that
determine their confirmation latencies and security trade-offs.

Acknowledgements. We thank Hung Dang for his helpful comments on the work.
We thank sponsors of the Crystal Center at NUS, which has supported this work. All
opinions presented in this work are those of the authors only.

References

1. Feather-forks: enforcing a blacklist with sub-50. https://bitcointalk.org/index.php?
topic=312668.0

2. Hash chain wiki. https://en.wikipedia.org/wiki/Hash chain
3. Litecoin wiki. https://en.wikipedia.org/wiki/Litecoin
4. A next-generation smart contract and decentralized application platform. https://

github.com/ethereum/wiki/wiki/White-Paper
5. Total market capital of cryptourrencies (2018). https://coinmarketcap.com
6. Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., Danezis, G.: Chainspace: a

sharded smart contracts platform. arXiv preprint arXiv:1708.03778 (2017)
7. Andrychowicz, M., Dziembowski, S.: PoW-based distributed cryptography with

no trusted setup. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9216, pp. 379–399. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7 19

8. Apostolaki, M., Zohar, A., Vanbever, L.: Hijacking Bitcoin: routing attacks on
cryptocurrencies. In: 2017 IEEE Symposium on Security and Privacy (SP), pp.
375–392. IEEE (2017)

9. Aspnes, J.: Randomized protocols for asynchronous consensus. Distrib. Comput.
16(2–3), 165–175 (2003)

10. Ben-Or, M.: Another advantage of free choice (extended abstract): completely
asynchronous agreement protocols. In: Proceedings of the Second Annual ACM
Symposium on Principles of Distributed Computing, pp. 27–30. ACM (1983)

11. Ben-Or, M., El-Yaniv, R.: Resilient-optimal interactive consistency in constant
time. Distrib. Comput. 16(4), 249–262 (2003)

12. Ben-Or, M., Pavlov, E., Vaikuntanathan, V.: Byzantine agreement in the full-
information model in O (log n) rounds. In: Proceedings of the Thirty-Eighth
Annual ACM Symposium on Theory of Computing, pp. 179–186. ACM (2006)

https://bitcointalk.org/index.php?topic=312668.0
https://bitcointalk.org/index.php?topic=312668.0
https://en.wikipedia.org/wiki/Hash_chain
https://en.wikipedia.org/wiki/Litecoin
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://coinmarketcap.com
http://arxiv.org/abs/1708.03778
https://doi.org/10.1007/978-3-662-48000-7_19
https://doi.org/10.1007/978-3-662-48000-7_19

(Invited Paper) on the Security of Blockchain Consensus Protocols 477

13. Bentov, I., Gabizon, A., Zuckerman, D.: Bitcoin beacon. arXiv preprint
arXiv:1605.04559 (2016)

14. Bitcoinst: 51 percent attack on Bitcoin cash (2018). https://bitcoinist.com/roger-
ver-bitpico-hard-fork-bitcoin-cash/

15. Bolot, J.C.: End-to-end packet delay and loss behavior in the internet. In: ACM
SIGCOMM Computer Communication Review, vol. 23, pp. 289–298. ACM (1993)

16. Bonneau, J., Clark, J., Goldfeder, S.: On bitcoin as a public randomness source.
IACR Cryptology ePrint Archive 2015, 1015 (2015)

17. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:
research perspectives and challenges for Bitcoin and cryptocurrencies. In: 2015
IEEE Symposium on Security and Privacy (SP), pp. 104–121. IEEE (2015)

18. Breidenbach, L., Daian, P., Tramer, F., Juels, A.: Enter the hydra: towards prin-
cipled bug bounties and exploit-resistant smart contracts. In: Proceedings of the
27th USENIX Conference on Security Symposium. USENIX Association (2018)

19. Castro, M., Liskov, B., et al.: Practical Byzantine fault tolerance. In: Proceedings
of the Third Symposium on Operating Systems Design and Implementation, pp.
173–186. USENIX Association (1999)

20. Daian, P., Pass, R., Shi, E.: Snow white: robustly reconfigurable consensus and
applications to provably secure proofs of stake (2017)

21. Decker, C., Seidel, J., Wattenhofer, R.: Bitcoin meets strong consistency. In: Pro-
ceedings of the 17th International Conference on Distributed Computing and Net-
working, p. 13. ACM (2016)

22. Decker, C., Wattenhofer, R.: Information propagation in the Bitcoin network. In:
2013 IEEE Thirteenth International Conference on Peer-to-Peer Computing (P2P),
pp. 1–10. IEEE (2013)

23. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.)
IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45748-8 24

24. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-48071-4 10

25. Eyal, I.: The miner’s dilemma. In: 2015 IEEE Symposium on Security and Privacy
(SP), pp. 89–103. IEEE (2015)

26. Eyal, I., Gencer, A.E., Sirer, E.G., Van Renesse, R.: Bitcoin-NG: a scalable
blockchain protocol. In: NSDI, pp. 45–59 (2016)

27. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. Commun.
ACM 61(7), 95–102 (2018)

28. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM (JACM) 32(2), 374–382 (1985)

29. Garay, J., Kiayias, A.: SoK: a consensus taxonomy in the blockchain era. Cryptol-
ogy ePrint Archive, Report 2018/754 (2018). https://eprint.iacr.org/2018/754

30. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

31. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.:
On the security and performance of proof of work blockchains. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pp. 3–16. ACM (2016)

http://arxiv.org/abs/1605.04559
https://bitcoinist.com/roger-ver-bitpico-hard-fork-bitcoin-cash/
https://bitcoinist.com/roger-ver-bitpico-hard-fork-bitcoin-cash/
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/3-540-48071-4_10
https://eprint.iacr.org/2018/754
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10

478 S. Das et al.

32. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on
Operating Systems Principles, pp. 51–68. ACM (2017)

33. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on Bitcoin’s
peer-to-peer network. In: USENIX Security Symposium, pp. 129–144 (2015)

34. Hou, R., Jahja, I., Luu, L., Saxena, P., Yu, H.: Randomized view reconciliation in
permissionless distributed systems (2017)

35. Kalodner, H., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.W.: Arbitrum:
scalable, private smart contracts. In: Proceedings of the 27th USENIX Conference
on Security Symposium, pp. 1353–1370. USENIX Association (2018)

36. Kiayias, A., Panagiotakos, G.: Speed-security tradeoffs in blockchain protocols
(2015)

37. Kiayias, A., Panagiotakos, G.: On trees, chains and fast transactions in the
blockchain. (2016)

38. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

39. King, V., Saia, J.: Byzantine agreement in expected polynomial time. J. ACM
(JACM) 63(2), 13 (2016)

40. Kogias, E.K., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.: Enhancing
Bitcoin security and performance with strong consistency via collective signing. In:
25th USENIX Security Symposium (USENIX Security 2016), pp. 279–296 (2016)

41. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Ford, B.: OmniLedger: a
secure, scale-out, decentralized ledger. IACR Cryptology ePrint Archive 2017, 406
(2017)

42. Kroll, J.A., Davey, I.C., Felten, E.W.: The economics of Bitcoin mining, or Bitcoin
in the presence of adversaries. In: Proceedings of WEIS, vol. 2013, p. 11 (2013)

43. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (1979). https://doi.org/
10.1109/TC.1979.1675439

44. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans.
Program. Lang. Syst. (TOPLAS) 4(3), 382–401 (1982)

45. Lewenberg, Y., Sompolinsky, Y., Zohar, A.: Inclusive block chain protocols. In:
Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 528–547. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7 33

46. Li, C., Li, P., Xu, W., Long, F., Yao, A.C.: Scaling Nakamoto consensus to thou-
sands of transactions per second. arXiv preprint arXiv:1805.03870 (2018)

47. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: Asecure
sharding protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 17–30. ACM (2016)

48. Luu, L., Saha, R., Parameshwaran, I., Saxena, P., Hobor, A.: On power splitting
games in distributed computation: The case of Bitcoin pooled mining. In: 2015
IEEE 28th Computer Security Foundations Symposium (CSF), pp. 397–411. IEEE
(2015)

49. Luu, L., Teutsch, J., Kulkarni, R., Saxena, P.: Demystifying incentives in the con-
sensus computer. In: Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 706–719. ACM (2015)

50. Luu, L., Velner, Y., Teutsch, J., Saxena, P.: Smart pool: practical decentralized
pooled mining. IACR Cryptology ePrint Archive 2017, 19 (2017)

https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1007/978-3-662-47854-7_33
http://arxiv.org/abs/1805.03870

(Invited Paper) on the Security of Blockchain Consensus Protocols 479

51. Lynch, N.A.: Distributed Algorithms. Elsevier, Amsterdam (1996)
52. Maurer, U.: Modelling a public-key infrastructure. In: Bertino, E., Kurth, H.,

Martella, G., Montolivo, E. (eds.) ESORICS 1996. LNCS, vol. 1146, pp. 325–350.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61770-1 45

53. Miller, A., Kosba, A., Katz, J., Shi, E.: Nonoutsourceable scratch-off puzzlesto
discourage Bitcoin mining coalitions. In: Proceedings of the 22nd ACMSIGSAC
Conference on Computer and Communications Security, pp. 680–691. ACM(2015)

54. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of BFT
protocols. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 31–42. ACM (2016)

55. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

56. Moon, S.B., Skelly, P., Towsley, D.: Estimation and removal of clock skew from
network delay measurements. In: INFOCOM 1999 Proceedings of the Eighteenth
Annual Joint Conference of the IEEE Computer and Communications Societies,
vol. 1, pp. 227–234. IEEE (1999)

57. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
58. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-

chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

59. Pass, R., Shi, E.: Thunderella: blockchains with optimistic instant confirmation.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp.
3–33. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 1

60. Popov, S.: The tangle. cit. on, p. 131 (2016)
61. Ren, L., Nayak, K., Abraham, I., Devadas, S.: Practical synchronous byzantine

consensus. arXiv preprint arXiv:1704.02397 (2017)
62. Rosenfeld, M.: Analysis of hashrate-based double spending. arXiv preprint

arXiv:1402.2009 (2014)
63. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in

Bitcoin. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 515–
532. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 30

64. Sompolinsky, Y., Zohar, A.: PHANTOM: a scalable BlockDAG protocol (2018)
65. Sompolinsky, Y., Lewenberg, Y., Zohar, A.: SPECTRE: a fast and scalable cryp-

tocurrency protocol. IACR Cryptology ePrint Archive 2016, 1159 (2016)
66. Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in Bitcoin. In:

Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 507–527. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7 32

67. Syta, E., et al.: Keeping authorities “honest or bust” with decentralized witness
cosigning. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 526–545.
IEEE (2016)

68. Szabo, N.: Smart contracts (1994). http://www.fon.hum.uva.nl/rob/Courses/
InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.
vwh.net/smart.contracts.html

69. Teutsch, J., Jain, S., Saxena, P.: When cryptocurrencies mine their own business.
In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 499–514.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 29

70. Teutsch, J., Reitwießner, C.: A scalable verification solution for blockchains (2017).
https://people.cs.uchicago.edu/teutsch/papers/truebitpdf

https://doi.org/10.1007/3-540-61770-1_45
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-78375-8_1
http://arxiv.org/abs/1704.02397
http://arxiv.org/abs/1402.2009
https://doi.org/10.1007/978-3-662-54970-4_30
https://doi.org/10.1007/978-3-662-47854-7_32
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://doi.org/10.1007/978-3-662-54970-4_29
https://people.cs.uchicago.edu/teutsch/papers/truebitpdf

480 S. Das et al.

71. Vasek, M., Thornton, M., Moore, T.: Empirical analysis of denial-of-service attacks
in the Bitcoin ecosystem. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.)
FC 2014. LNCS, vol. 8438, pp. 57–71. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44774-1 5

72. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Proj. Yellow Pap. 151, 1–32 (2014)

73. Zamani, M., Movahedi, M., Raykova, M.: RapidChain: scaling blockchain via full
sharding. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pp. 931–948. ACM (2018)

74. Das, S., Ribeiro, V.J., Anand, A.: YODA: enabling computationally inten-
sive contracts on blockchains with Byzantine and Selfish nodes. arXiv preprint
arXiv:1811.03265 (2018)

https://doi.org/10.1007/978-3-662-44774-1_5
https://doi.org/10.1007/978-3-662-44774-1_5
http://arxiv.org/abs/1811.03265

	(Invited Paper) on the Security of Blockchain Consensus Protocols
	1 Introduction
	2 The Blockchain Consensus Problem
	2.1 Threat Model and Assumptions
	2.2 Nakamoto Consensus
	2.3 The Problem

	3 Security Analysis of Nakamoto Consensus
	4 Scalability Extensions to Nakamoto Consensus
	5 Scalability Solutions Based on Byzantine Agreement
	6 Conclusions
	References

